Practical Guide:
int n = 2;
plot(_1,bessel_J(n,_1).derivative(1)).p1range(0,30);
vector<var> x,y;
for(int i=1; i<10; ++i)
{
x.push_back(bessel_Jprime_zero(n,i));
y.push_back(0);
}
mplot(x,y).ac(red).pt(fcircle).legend("Zeroes of Bessel derivative");
These functions are wrappers around the
gsl_sf_bessel_XXX
functions (Gnu Scientific Library). They are therefore not available
if you do not have GSL at compile-time.
function bessel_J(int n, const function &x); // blop-function
double bessel_J(int n, double x); // evaluate on a number
function bessel_Y(int n, const function &x);
double bessel_Y(int n, double x);
function bessel_I(int n, const function &x);
double bessel_I(int n, double x);
function bessel_K(int n, const function &x);
double bessel_K(int n, double x);
function bessel_j(int n, const function &x);
double bessel_j(int n, double x);
function bessel_y(int n, const function &x);
double bessel_y(int n, double x);
function bessel_i_scaled(int n, const function &x);
double bessel_i_scaled(int n, double x);
function bessel_k_scaled(int n, const function &x);
double bessel_k_scaled(int n, double x);
double bessel_J_zero(int n, int s); // Return the s-th (nontrivial) zero of the n-th Bessel function
double bessel_Jprime_zero(int n, int s); // Return the s-th zero of
the 1st derivative of the n-th Bessel J function